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The analytical studies show that the application of a small solenoidal magnetic field can drastically
change the self-magnetic and self-electric fields of the beam pulse propagating in a background plasma.
Theory predicts that when !ce �!pe�b, where !ce is the electron gyrofrequency, !pe is the electron
plasma frequency, and �b is the ion-beam velocity relative to the speed of light, there is a sizable
enhancement of the self-electric and self-magnetic fields due to the dynamo effect. Furthermore, the
combined ion-beam–plasma system acts as a paramagnetic medium; i.e., the solenoidal magnetic field
inside the beam pulse is enhanced.
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Background plasma can be used as an effective neutral-
ization scheme to transport and compress intense charged
particle beam pulses and is used in many applications
involving the transport of fast particles in plasmas, includ-
ing astrophysics [1], accelerator applications [2], and iner-
tial fusion, in particular, fast ignition [3] and heavy ion
fusion [4]. The application of a solenoidal magnetic field
allows additional control and focusing of the beam pulse. A
strong magnetic lens with a magnetic field up to a few
Tesla can effectively focus beam pulses in short distances
of order a few tens of centimeters. However, the magnetic
field can also affect the degree of charge and current
neutralization. In this Letter, we show that even a small
solenoidal magnetic field, less than 100 G, strongly
changes the self-fields in the beam pulse propagating in a
background plasma. Such values of magnetic field can be
present over distances of a few meters from the strong
solenoid, and affect the focusing of the beam pulse.
Moreover, a small solenoidal magnetic field can be applied
to optimize beam propagation through a background
plasma over long distances.

In Refs. [5], the response of a magnetized plasma to
intense ion-beam injection was studied while neglecting
electron inertia effects, which corresponded to magnetic
fields of a few Tesla in ion ring devices. In the present
Letter, we analyze the opposite limit, corresponding to
small values of magnetic field. In the collisionless limit
and without an applied solenoidal magnetic field, the return
current is driven by an inductive electric field which is
balanced by electron inertia effects [6]. Taking electron
inertia effects into account allows us to determine the
conditions under which the applied solenoidal magnetic
field begins to affect the return current in the plasma, and to
reveal the range of magnetic field values that strongly
affect the self-electric and self-magnetic fields of a beam
pulse propagating in a background plasma.

In a previous study, we developed reduced nonlinear
models that describe the stationary plasma disturbance

(in the beam frame) excited by the intense ion-beam pulse
[6]. The model predicts very good charge neutralization
during quasi-steady-state propagation, provided the beam
is nonrelativistic and the beam pulse duration is much
longer than the electron plasma period, i.e., �b!pe �

2�. Here, !pe � �4�e
2np=m�

1=2 is the electron plasma
frequency, and np is the background plasma density.

A high solenoidal magnetic field inhibits radial electron
transport, and the electrons move primarily along the mag-
netic field lines. For high-intensity beam pulses propagat-
ing through a background plasma with pulse duration much
longer than the electron plasma period, one can assume
that the quasineutrality condition holds, ne � np � Zbnb,
where ne is the electron density, nb is the density of the
beam pulse, Zbe is ion charge for the beam ions, whereas
Zb � �1 for electron beams, and np is the density of the
background plasma ions. For one-dimensional electron
motion, the charge density continuity equation, @�=@t�
r 	 J � 0, combined with the quasineutrality condition
[� � e�np � Zbnb � ne� � 0] yields J � 0; i.e., in this
motion, the electrons tend to neutralize the current as
well as the charge. Therefore, in the limit of a strong
solenoidal magnetic field, the beam current can be ex-
pected to be completely neutralized. However, the above
description neglects the electron rotation that develops in
the presence of a solenoidal magnetic field. Because of the
inward radial electron motion, the electrons can enter into
the region of smaller magnetic flux. Because of the con-
servation of canonical angular momentum, the electrons
start rotating about the solenoid axis with a very high
azimuthal velocity. This rotation produces several unex-
pected effects.

The first effect is the dynamo effect [7]. If the magnetic
field is attached to the electron flow, the electron rotation
bends the solenoidal magnetic field lines and generates an
azimuthal self-magnetic field, which is much larger than in
the limit with no applied solenoidal field. The second effect
is the generation of a large radial electric field. Because the
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v� 
 Bz force should be mostly balanced by a radial
electric field, the electron rotation results in a plasma
polarization and produces a much larger self-electric field
than in the limit with no applied field. The total force acting
on the beam particles now can change from always focus-
ing [6] in the limit with no applied solenoidal magnetic
field, to defocusing at higher values of solenoidal magnetic
field. In particular, an optimum value of magnetic field for
long-distance transport of a beam pulse, needed, for ex-
ample, in inertial fusion applications [4], can be chosen
where the forces nearly cancel. The third effect is that the
joint system consisting of the ion-beam pulse and the
background plasma acts as a paramagnetic medium; i.e.,
the solenoidal magnetic field is enhanced inside of the ion-
beam pulse.

The electron fluid equations together with Maxwell’s
equations comprise a complete system describing the elec-
tron response to the propagating ion-beam pulse. We as-
sume that the beam pulse moves with constant velocity Vb
along the z axis. We look for stationary solutions in the
reference frame of the moving beam, i.e., where all quan-
tities depend on t and z exclusively through the combi-
nation � � Vbt� z. Here, for brevity, we consider non-
relativistic beams, although the results can be calculated
for relativistic beams as well [8,9]. We further consider
cylindrically symmetric, long beam pulses with length lb
and radius rb, satisfying lb � Vb=!pe and lb � rb. The
final equations have the simplest form if we express B �
r
A and make use of the transverse Coulomb gauge,
r? 	A � 0. For axisymmetric geometry, this gives Ar �
0. The azimuthal magnetic field is B� � �@Az=@r, and the
perturbed (by the plasma) magnetic field components are
Bz � @�rA��=r@r, Br � �@A�=@z. For long beams with
lb � Vb=!pe, rb, the displacement current is small com-
pared to the electron current [6], and Ampere’s equations
are
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The electron momentum equation can be solved to obtain
the components of electron velocity Vez, Ver, Ve�.
However, it is easier to use conservation of the generalized
vorticity [6]
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where the generalized vorticity is defined as

 � � r
 �mVe � eA=c�: (4)

This is a generalization of the ‘‘frozen-in’’ condition for
the magnetic field lines, when electron inertia terms are

neglected and � � �eB=c [10]. For simplicity, we con-
sider the most practically important case when the plasma
density is large np � nb. Because np � nb, the effects of
electron flows are small compared to the beam motion
(Vez � Vb) and can be neglected in Eq. (3) together with
variations in the electron density. Substituting @=@t �
Vb@=@z into Eq. (3), and integrating with zero initial con-
ditions in front of the beam pulse gives �� � �zVe�=Vb.
Here, we made use of the fact that �z � �eBz=c is
approximately constant. Note that, if the inertia effects
are neglected, this relation describes the magnetic field
‘‘frozen in’’ the electron flow, B� � BzVe�=Vb. From
Eq. (4), it follows that �� ’ �@�mVez � eAz=c�=@r,
where only the radial derivatives are taken into account,
due to the approximation of long beam pulses in Eq. (4).
Substituting the expressions for �� and �z into �� �

�zVe�=Vb, and integrating radially gives

 Vez �
e
mc

Az �
eBz
mcVb

Z 1
r
Ve�dr: (5)

The first term on the right-hand side of Eq. (5) describes
the conservation of canonical momentum in the absence of
magnetic field; the second term describes the magnetic
dynamo effect, i.e., the generation of azimuthal magnetic
field due to the rotation of magnetic field lines [7], as
shown in Fig. 1. Substituting

R
1
r Ve�dr from Eq. (2), and

neglecting very small beam rotation compared to the rota-
tion velocity of the plasma electrons, gives

 Vez �
e
mc

Az �
Bz

4�mVbne

1

r

@�rA��

@r
: (6)

Similarly, from the z projection of Eq. (3), we obtain
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In order to account for a possible departure from quasineu-
trality, we substitute into Eq. (7) the perturbation in elec-
tron density obtained from

Vb 

magnetic field lineion beam pulse 

magnetic flux surfaces

Bϕ

Bz 

FIG. 1 (color online). Schematic of magnetic field generation
due to the dynamo effect. The magnetic field line is shown by the
solid (black) line; a contour attached to the electron fluid element
is shown by the dashed (brown) line in front of the beam pulse;
and the dotted (brown) line indicates this contour inside of the
ion-beam pulse, the outline of which is shown by the thin dotted
(orange) line. The radial electron displacement generates a
poloidal rotation; the poloidal rotation twists the solenoidal
magnetic field and generates the poloidal magnetic field.
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 �Zbnb � ne � np� �
1

4�er
@�rEr�
@r

: (8)

In the linear approximation, nb � np, the radial compo-
nent of the equation for the electron momenta gives

 Er � �
1

c
Ve�Bz: (9)

Substituting Eqs. (8) and (9) for Er into Eq. (7), and
making use of Jz � ZbenbVb � enpVez and

R
1
r Jzrdr �

�cr=4��@Az=@r, gives after integration of Eq. (7)
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Equations (6) and (10), together with Eqs. (1) and (2),
compose a full system of equations.

Figure 2 shows a comparison of analytical theory and
LSP [11] particle-in-cell (PIC) simulation results for the
self-magnetic field, the perturbation in the solenoidal mag-
netic field, and the radial electric field in the ion-beam
pulse. We have performed the PIC simulations in slab
geometry, because the numerical noise tends to be larger
in cylindrical geometry due to the singularity on the axis
(r � 0). The beam velocity is Vb � 0:33c, and the beam
density profile is Gaussian, nb0 exp��r2=r2

b � z
2=l2b�,

where rb � 1 cm, lb � 17 cm, nb0 � np=8 � 3

1010 cm�3. For this choice of beam parameters, the skin
depth is approximately equal to the beam radius c=!pe ’

rb, so that the return current does not screen the beam self-
magnetic field significantly. Without the applied solenoidal
magnetic field, the maximum value of the self-magnetic
field is 14 G, and increases slightly to 15 G for Bz0 �
300 G [see Fig. 2(a)]. However, the maximum value of the
self-magnetic field increases strongly to 37 G for Bz0 �
900 G [see Fig. 2(b)]. This is due to the magnetic dynamo
effect.

Another unusual effect is that the system consisting of
the beam pulse together with the background plasma acts
paramagnetically: the solenoidal magnetic field is larger in
the center of the beam pulse than the initial value of the
applied magnetic field. These effects can be obtained
analytically from components of Ampere’s equation,
Eqs. (1) and (2), in the limit where the skin depth is large
compared with the beam radius (c=!pe * rb). In this limit,
the terms proportional to the return current neA’ on the
right-hand side of Eq. (2) can be neglected compared with
the terms on the left-hand side. Without taking into account
small ion rotation, and neglecting the term neA’, Eq. (2)
can then be integrated from r � 0 to 1, assuming that
A� � 0 as r! 1 and !ce � !pe�b. This gives for the
perturbation in the solenoidal magnetic field

 �Bz �
1
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Note that �Bz is positive; i.e., the combination of the beam
pulse and the plasma acts paramagnetically. Substituting
Eq. (11) into Eq. (10) and into Eq. (1) gives
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; (12)

 Jz � ZbnbVbz �
ene
mc

Az �
eB2

z

4�m2cV2
b

Az: (13)

Note that the final positive term on the right-hand side of
Eq. (13) proportional to B2

z describes the dynamo effect
and leads to an increase in the self-magnetic field. This
increase becomes significant if ne4�mV

2
b=B

2
z < 1, or

equivalently !ce > !pe�b, where !ce � eBz=mc and
�b � Vb=c. For the value of the applied magnetic field
Bz0 � 300G in Fig. 2(a), the parameter !ce=�b!pe �

0:57, whereas !ce=�b!pe � 1:7 for Bz0 � 900 G in
Fig. 2(b). As a result, the dynamo effect results in a con-

φ
δ

φ
δ

φ
δ

φ δ

FIG. 2 (color online). Comparison of analytical theory and LSP simulation results for the self-magnetic field, the perturbation in the
solenoidal magnetic field, and the radial electric field in a perpendicular slice of the beam pulse. The ion beam moves with velocity
Vb � 0:33c along the z axis. The beam density profile is Gaussian with rb � 1 cm, lb � 17 cm, with nb0 � np=8 � 3
 1010 cm�3.
The values of the applied magnetic field Bz0 are the following: (a) Bz0 � 300 G; and (b) Bz0 � 900 G.
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siderable increase in the self-magnetic field of the beam
pulse, also in agreement with Eq. (13).

The radial self-electric field is small and cannot be
distinguished from numerical noise in the PIC simulations
for small values of the applied magnetic field, but increases
to the level of a few kV=cm for Bz0 � 900 G. Such a large
value of radial electric field can eventually lead to a break-
down of the quasineutrality condition for !ce �

� !pe and
c=!pe ’ rb, which is observed in numerical simulations
and can also be derived analytically [8]. In the presence of
the solenoidal magnetic field, the radial force acting on the
beam ions can change sign from focusing to defocusing,
because the radial electric field increases more rapidly than
the magnetic force �ZbVbzB�, as the solenoidal magnetic
field increases. To demonstrate this tendency analytically,
let us consider only linear terms in the radial force equation
assuming nb � np. In this limit, the radial force acting on
beam ions, Fr � eZb��VbzB�=c� Er�, becomes

 Fr � �
eZb
c
�VbzB� � Ve�Bz�; (14)

where Ve� is given by Eq. (10). Figure 3 shows the radial
profile of the normalized radial force acting on the beam
particles for various values of the parameter !2

ce=!
2
pe�

2
b.

The radial force is nearly zero when !2
ce=!

2
pe�

2
b � 1:5 for

the main part of the beam pulse. This value can be optimal
for beam transport over long distances to avoid the pinch-
ing effect. Note that the radial force is focusing at larger
radius, which can help to minimize halo particle formation,
and produce a tighter beam focus.

In summary, the application of a solenoidal magnetic
field strongly affects the degree of current and charge
neutralization when !ce > !pe�b�b, where �b �
�1� �2

b�
�1=2. This criterion is generalized to the case of

relativistic beams in Refs. [8,9]. This threshold value of
solenoidal magnetic field is relatively small for nonrelativ-
istic beams. Application of the solenoidal magnetic field
leads to three unexpected effects: The first effect is the
dynamo effect, in which the electron rotation generates a
self-magnetic field that is much larger than in the limit with
no applied magnetic field. The second effect is the genera-
tion of a large radial electric field. Because the v� 
 Bz
force should be balanced by a radial electric field, the
electron rotation results in a plasma polarization and pro-
duces a much larger self-electric field than in the limit with
no applied field. The third unexpected effect is that the
joint system consisting of the ion-beam pulse and the
background plasma acts as a paramagnetic medium; i.e.,
the solenoidal magnetic field is enhanced inside of the ion-
beam pulse. For larger values of the solenoidal magnetic
field, corresponding to !ce > 2�2

b�b!pe, the beam gener-
ates whistler and lower-hybrid waves, and this effect is
considered in Refs. [8,9].
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FIG. 3 (color online). The normalized radial force
Fr=�Z

2
bnb0mV

2
bz=np�p� acting on the beam particles for different

values of the parameter !2
ce=!

2
pe�

2
b. The gray (green) line shows

the Gaussian density profile multiplied by 0.2 in order to fit the
profile into the plot. The beam radius is equal to the skin depth,
rb � �p.
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